240 research outputs found

    A novel finite element method approach in the modelling of edge trimming of CFRP laminates

    Get PDF
    Nowadays, the development of robust finite element models is vital to research cost-effectively the optimal cutting parameters of a composite machining process. However, various factors, such as the high computational cost or the complicated nature of the interaction between the workpiece and the cutting tool significantly hinder the modelling of these types of processes. For these reasons, the numerical study of common machining operations, especially in composite machining, is still minimal. This paper presents a novel approach comprising a mixed multidirectional composite damage mode with composite edge trimming operation. An ingenious finite element framework which infer the cutting edge tool wear assessing the incremental change of the machining forces is developed. This information is essential to replace tool inserts before the tool wear could cause severe damage in the machined parts. Two unidirectional carbon fibre specimens with fibre orientations of 45∘ and 90∘ manufactured by pre-preg layup and cured in an autoclave were tested. Excellent machining force predictions were obtained with errors below 10% from the experimental trials. A consistent 2D FE composite damage model previously performed in composite machining was implemented to mimic the material failure during the machining process. The simulation of the spring back effect was shown to notably increase the accuracy of the numerical predictions in comparison to similar investigations. Global cutting forces simulated were analysed together with the cutting tool tooth forces to extract interesting conclusions regarding the forces received by the spindle axis and the cutting tool tooth, respectively. In general terms, vertical and normal forces steadily increase with tool wear, while tangential to the cutting tool, tooth and horizontal machining forces do not undergo a notable variation

    Gene expression drives the evolution of dominance.

    Get PDF
    Dominance is a fundamental concept in molecular genetics and has implications for understanding patterns of genetic variation, evolution, and complex traits. However, despite its importance, the degree of dominance in natural populations is poorly quantified. Here, we leverage multiple mating systems in natural populations of Arabidopsis to co-estimate the distribution of fitness effects and dominance coefficients of new amino acid changing mutations. We find that more deleterious mutations are more likely to be recessive than less deleterious mutations. Further, this pattern holds across gene categories, but varies with the connectivity and expression patterns of genes. Our work argues that dominance arises as a consequence of the functional importance of genes and their optimal expression levels

    Concise Reporting of Benign Endometrial Biopsies is an Acceptable Alternative to Descriptive Reporting

    Get PDF
    In the United Kingdom, endometrial biopsy reports traditionally consist of a morphologic description followed by a conclusion. Recently published consensus guidelines for reporting benign endometrial biopsies advocate the use of standardized terminology. In this project we aimed to assess the acceptability and benefits of this simplified "diagnosis only" format for reporting non-neoplastic endometrial biopsies. Two consultants reported consecutive endometrial biopsies using 1 of 3 possible formats: (i) diagnosis only, (ii) diagnosis plus an accompanying comment, and (iii) the traditional descriptive format. Service users were asked to provide feedback on this approach via an anonymized online survey. The reproducibility of this system was assessed on a set of 53 endometrial biopsies among consultants and senior histopathology trainees. Of 370 consecutive benign endometrial biopsies, 245 (66%) were reported as diagnosis only, 101 (27%) as diagnosis plus a brief comment, and 24 (7%) as diagnosis following a morphologic description. Of the 43 survey respondents (28 gynecologists, 11 pathologists, and 4 clinical nurse specialists), 40 (93%) preferred a diagnosis only, with 3 (7%) being against/uncertain about a diagnosis only report. Among 3 histopathology consultants and 4 senior trainees there was majority agreement on the reporting format in 53/53 (100%) and 52/53 (98%) biopsies. In summary, we found that reporting benign specimens within standardized, well-understood diagnostic categories is an acceptable alternative to traditional descriptive reporting, with the latter reserved for the minority of cases that do not fit into specific categories. This revised approach has the potential to improve reporting uniformity and reproducibility

    The 'K' selected oligophilic bacteria: a key to uncultured diversity?

    Get PDF
    Molecular techniques have made it increasingly clear that a large proportion of bacterial diversity in natural habitats is uncultured and therefore unexplored. We suggest and give evidence in support of a hypothesis that a large proportion, if not all, of the uncultured diversity from a variety of aquatic and terrestrial habitats are oligophilic (oligotrophic) bacteria. Oligophilic bacteria grow only on dilute nutrient media and form small or microscopic colonies. A technique to cultivate and isolate the moderately oligophilic bacteria was developed and 90 cultures isolated, The twelve bacterial cultures characterized showed high growth yield coefficients and carbon conversion efficiencies at low substrate concentrations and progressively decreased with increasing substrate concentrations. Most of the growth yields were substantially higher than those reported in the literature and lie near the theoretical maximum. Slow growth rates and high yields indicate that they are 'K' selected species. 16S rDNA partial sequence analysis of the isolates indicates that it is a novel as well as diverse group

    Implementation of Multigene Germline and Parallel Somatic Genetic Testing in Epithelial Ovarian Cancer: SIGNPOST Study

    Get PDF
    We present findings of a cancer multidisciplinary-team (MDT) coordinated mainstreaming pathway of unselected 5-panel germline BRCA1/BRCA2/RAD51C/RAD51D/BRIP1 and parallel somatic BRCA1/BRCA2 testing in all women with epithelial-OC and highlight the discordance between germline and somatic testing strategies across two cancer centres. Patients were counselled and consented by a cancer MDT member. The uptake of parallel multi-gene germline and somatic testing was 97.7%. Counselling by clinical-nurse-specialist more frequently needed >1 consultation (53.6% (30/56)) compared to a medical (15.0% (21/137)) or surgical oncologist (15.3% (17/110)) (p < 0.001). The median age was 54 (IQR = 51–62) years in germline pathogenic-variant (PV) versus 61 (IQR = 51–71) in BRCA wild-type (p = 0.001). There was no significant difference in distribution of PVs by ethnicity, stage, surgery timing or resection status. A total of 15.5% germline and 7.8% somatic BRCA1/BRCA2 PVs were identified. A total of 2.3% patients had RAD51C/RAD51D/BRIP1 PVs. A total of 11% germline PVs were large-genomic-rearrangements and missed by somatic testing. A total of 20% germline PVs are missed by somatic first BRCA-testing approach and 55.6% germline PVs missed by family history ascertainment. The somatic testing failure rate is higher (23%) for patients undergoing diagnostic biopsies. Our findings favour a prospective parallel somatic and germline panel testing approach as a clinically efficient strategy to maximise variant identification. UK Genomics test-directory criteria should be expanded to include a panel of OC genes

    Budding Yeast Pch2, a Widely Conserved Meiotic Protein, Is Involved in the Initiation of Meiotic Recombination

    Get PDF
    Budding yeast Pch2 protein is a widely conserved meiosis-specific protein whose role is implicated in the control of formation and displacement of meiotic crossover events. In contrast to previous studies where the function of Pch2 was implicated in the steps after meiotic double-strand breaks (DSBs) are formed, we present evidence that Pch2 is involved in meiotic DSB formation, the initiation step of meiotic recombination. The reduction of DSB formation caused by the pch2 mutation is most prominent in the sae2 mutant background, whereas the impact remains mild in the rad51 dmc1 double mutant background. The DSB reduction is further pronounced when pch2 is combined with a hypomorphic allele of SPO11. Interestingly, the level of DSB reduction is highly variable between chromosomes, with minimal impact on small chromosomes VI and III. We propose a model in which Pch2 ensures efficient formation of meiotic DSBs which is necessary for igniting the subsequent meiotic checkpoint responses that lead to proper differentiation of meiotic recombinants

    A Genome-Wide Analysis Reveals No Nuclear Dobzhansky-Muller Pairs of Determinants of Speciation between S. cerevisiae and S. paradoxus, but Suggests More Complex Incompatibilities

    Get PDF
    The Dobzhansky-Muller (D-M) model of speciation by genic incompatibility is widely accepted as the primary cause of interspecific postzygotic isolation. Since the introduction of this model, there have been theoretical and experimental data supporting the existence of such incompatibilities. However, speciation genes have been largely elusive, with only a handful of candidate genes identified in a few organisms. The Saccharomyces sensu stricto yeasts, which have small genomes and can mate interspecifically to produce sterile hybrids, are thus an ideal model for studying postzygotic isolation. Among them, only a single D-M pair, comprising a mitochondrially targeted product of a nuclear gene and a mitochondrially encoded locus, has been found. Thus far, no D-M pair of nuclear genes has been identified between any sensu stricto yeasts. We report here the first detailed genome-wide analysis of rare meiotic products from an otherwise sterile hybrid and show that no classic D-M pairs of speciation genes exist between the nuclear genomes of the closely related yeasts S. cerevisiae and S. paradoxus. Instead, our analyses suggest that more complex interactions, likely involving multiple loci having weak effects, may be responsible for their post-zygotic separation. The lack of a nuclear encoded classic D-M pair between these two yeasts, yet the existence of multiple loci that may each exert a small effect through complex interactions suggests that initial speciation events might not always be mediated by D-M pairs. An alternative explanation may be that the accumulation of polymorphisms leads to gamete inviability due to the activities of anti-recombination mechanisms and/or incompatibilities between the species' transcriptional and metabolic networks, with no single pair at least initially being responsible for the incompatibility. After such a speciation event, it is possible that one or more D-M pairs might subsequently arise following isolation

    A role for a neo-sex chromosome in stickleback speciation.

    Get PDF
    Sexual antagonism, or conflict between the sexes, has been proposed as a driving force in both sex-chromosome turnover and speciation. Although closely related species often have different sex-chromosome systems, it is unknown whether sex-chromosome turnover contributes to the evolution of reproductive isolation between species. Here we show that a newly evolved sex chromosome contains genes that contribute to speciation in threespine stickleback fish (Gasterosteus aculeatus). We first identified a neo-sex chromosome system found only in one member of a sympatric species pair in Japan. We then performed genetic linkage mapping of male-specific traits important for reproductive isolation between the Japanese species pair. The neo-X chromosome contains loci for male courtship display traits that contribute to behavioural isolation, whereas the ancestral X chromosome contains loci for both behavioural isolation and hybrid male sterility. Our work not only provides strong evidence for a large X-effect on reproductive isolation in a vertebrate system, but also provides direct evidence that a young neo-X chromosome contributes to reproductive isolation between closely related species. Our data indicate that sex-chromosome turnover might have a greater role in speciation than was previously appreciated

    Islet-Like Cell Aggregates Generated from Human Adipose Tissue Derived Stem Cells Ameliorate Experimental Diabetes in Mice

    Get PDF
    BACKGROUND: Type 1 Diabetes Mellitus is caused by auto immune destruction of insulin producing beta cells in the pancreas. Currently available treatments include transplantation of isolated islets from donor pancreas to the patient. However, this method is limited by inadequate means of immuno-suppression to prevent islet rejection and importantly, limited supply of islets for transplantation. Autologous adult stem cells are now considered for cell replacement therapy in diabetes as it has the potential to generate neo-islets which are genetically part of the treated individual. Adopting methods of islet encapsulation in immuno-isolatory devices would eliminate the need for immuno-suppressants. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we explore the potential of human adipose tissue derived adult stem cells (h-ASCs) to differentiate into functional islet like cell aggregates (ICAs). Our stage specific differentiation protocol permit the conversion of mesodermic h-ASCs to definitive endoderm (Hnf3β, TCF2 and Sox17) and to PDX1, Ngn3, NeuroD, Pax4 positive pancreatic endoderm which further matures in vitro to secrete insulin. These ICAs are shown to produce human C-peptide in a glucose dependent manner exhibiting in-vitro functionality. Transplantation of mature ICAs, packed in immuno-isolatory biocompatible capsules to STZ induced diabetic mice restored near normoglycemia within 3-4 weeks. The detection of human C-peptide, 1155±165 pM in blood serum of experimental mice demonstrate the efficacy of our differentiation approach. CONCLUSIONS: h-ASC is an ideal population of personal stem cells for cell replacement therapy, given that they are abundant, easily available and autologous in origin. Our findings present evidence that h-ASCs could be induced to differentiate into physiologically competent functional islet like cell aggregates, which may provide as a source of alternative islets for cell replacement therapy in type 1 diabetes
    • …
    corecore